MAT 2705-03104 11F Takehome Test 3 Answers (1)
(1) a) $\left[9 x^{\prime \prime}+6 x^{\prime}+37 x=F(t)\right] / 9 \rightarrow$
d) $9 x^{\prime \prime}+6 x^{1}+37 x=F_{0} \cos \omega t$

$$
\begin{array}{cl}
x^{\prime \prime}+\frac{2}{\frac{2}{3}} x^{\prime}+\frac{\frac{37}{9}}{k_{0}} x=\frac{1}{9} F(t) \\
\omega_{0}^{2} & \omega_{0}=\sqrt{\frac{37}{9}}=\frac{\sqrt{37}}{3} \approx 2.028 \\
R_{0}=2 / 3 \approx 0.667 & Q=\omega_{0} T_{0}=\frac{\sqrt{37}}{2} \approx 3.041 \\
\tau_{0}=1 / k_{0}=312=1.5 & T_{0}=\frac{2 \pi}{\omega_{0}}=\frac{6 \pi}{\sqrt{37}} \approx 3.099
\end{array}
$$

$37\left[x_{p}=c_{3} \cos \omega t+c_{4} \sin \omega t\right]$
$G\left[x_{p}^{\prime}=-\omega c_{3} \sin \omega t+\omega c_{4} \cos \omega t\right]$
$9\left[x_{p}^{\prime \prime}=-\omega^{2} c_{3} \cos \omega t-\omega^{2} c_{4} \sin \omega t\right]$

$$
\begin{aligned}
9 x_{p}^{\prime \prime}+6 x_{p}^{\prime}+37 x_{p} & =\left[\left(37-9 \omega^{2}\right) c_{3}+6 \omega c_{4}\right] \cos \omega t \\
& +\left[-6 \omega c_{3}+\left(37-9 \omega^{2}\right) c_{4}\right] \sin \omega t
\end{aligned}
$$

= Focos ωt
b) $x \sim e^{r t}: 9 r^{2} e^{r t}+6 r e^{r t}+37 e^{r t}=0$

$$
\begin{aligned}
9 r^{2}+6 r+37=0, r & =\frac{-6 \pm \sqrt{36-4 \cdot 9 \cdot 37}}{2 \cdot 9} \\
& =\frac{-6 \pm 36 i}{2 \cdot 9}=-\frac{1}{3} \pm 2 i
\end{aligned}
$$

$e^{r t}=e^{-\frac{t}{3}} e^{ \pm 2 i}=e^{-\frac{t}{3}}(\cos 2 t \pm 1 \sin 2 t) \xrightarrow{\text { complex }}$ basls \rightarrow
$\rightarrow e^{-t / 3} \cos 2 t, e^{-t / 3} \sin 2 t \quad \begin{aligned} & \text { real basis of } \\ & \text { soln space }\end{aligned}$
Gensoln: $x=e^{-t / 3}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)$

$$
\begin{aligned}
& x^{\prime}=-\frac{1}{3} e^{-t / 3}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)+e^{-t / 3}\left(-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t\right) \\
& R_{1}=\frac{1}{3} \approx 0.333, \quad \omega_{1}=2 \\
& \tau_{1}=1 / R_{1}=3 \quad T_{1}=2 \pi / \omega_{1}=\pi \approx 3.142
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } 9 x^{\prime \prime}+6 x^{\prime}+37 x=5 \cos 2 t \\
& 37\left[x_{p}=c_{3} \cos 2 t+c_{4} \sin 2 t\right] \\
& 6\left[x_{p}^{\prime}=2 c_{3} \sin 2 t+2 c_{4} \cos 2 t\right] \\
& 9\left[x_{p}^{\prime \prime}=-4 c_{3} \cos 2 t-4 c_{4} \sin 2 t\right] \\
& \left.9 x_{p}^{\prime \prime}+6 x_{p}{ }^{\prime}+37 x_{p}=[37-36) c_{3}+12 c_{4}\right] \cos 2 t=5 \cos 2 t \\
& +\left[-12 c_{3}+(57-36) c_{4}\right] \sin 2 t \\
& \begin{array}{c}
c_{3}+12 c_{4}=50 \\
-12 c_{3}+c_{4}=0
\end{array} \quad\left[\begin{array}{cc}
1 & 12 \\
-12 & 1
\end{array}\right]\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right]=\frac{1}{145}\left[\begin{array}{cc}
1-12 \\
12 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]=\frac{5}{5 \cdot 29}\left[\begin{array}{c}
1 \\
12
\end{array}\right]=\left[\begin{array}{ll}
1 & 129 \\
12 & 129
\end{array}\right]} \\
& x=x_{n}+x_{p}=e^{-t / 3}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)+\frac{1}{29}[\cos 2 t+12 \sin 2 t] \\
& x^{\prime}=-\frac{1}{3} e^{-\frac{t}{3}}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)+\frac{1}{29}[-2 \sin 2 t+24 \cos 2 t] \\
& +e^{-t / 3}\left(-2 c_{1} \sin 2 t+2 c_{z} \cos 2 t\right) \\
& x(0)=c_{1}+1 / 29=0 \rightarrow c_{1}=-1 / 29 \\
& x^{\prime}(0)=-\frac{c_{1}}{3}+2 c_{2}+24=0 \rightarrow c_{2}=\frac{1}{3}\left(-\frac{1}{29}\right)-\left(\frac{24}{29}\right)=-\frac{73}{174} \\
& x=e^{-t / 3}\left(-\frac{73}{174} \sin 2 t-1 / 2 \cos 2 t\right)+\frac{1}{29}[\cos 2 t+12 \sin 2 t]
\end{aligned}
$$

$$
\left[\begin{array}{cc}
37-9 \omega^{2} & 6 \omega \\
-6 \omega & 37-9 \omega^{2}
\end{array}\right]\left[\begin{array}{c}
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{c}
F_{0} \\
0
\end{array}\right]^{r c}
$$

$$
\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right]=\frac{1}{\left(37-9 \omega^{2}\right)^{2}+36 \omega^{2}}\left[\begin{array}{c}
37-9 \omega^{2}-60 \\
6 \omega \\
37-9 \omega^{2}
\end{array}\right]\left[\begin{array}{c}
F_{0} \\
0
\end{array}\right]
$$

$$
=\frac{F_{0}}{\left(37-9 \omega^{2}\right)^{2}+36 \omega^{2}}\left[\begin{array}{c}
37-9 \omega^{2} \\
6 \omega
\end{array}\right]
$$

e)

$$
x_{S S}=\frac{F_{0}}{\left(31-9 \omega^{2}\right)^{2}+36 \omega^{2}}\left[\left(37-9 \omega^{2}\right) \cos \omega t+6 \omega \sin \omega t\right]
$$

$$
\begin{aligned}
& A(\omega)=\frac{F_{0} \sqrt{\left(37-9 \omega^{2}\right)^{2}+36 \omega^{2}}}{\left(37-9 \omega^{2}\right)^{2}+36 \Omega^{2}}=\sqrt{\frac{F_{0}}{\sqrt{\left(37-9 \omega^{2}\right)^{2}+36 \omega^{2}}}} \\
&\left.=F_{0}\left(1369-630 \omega^{2}+81 \omega^{4}\right)^{-1 / 2}\right) \quad 5=5 \sqrt{145}
\end{aligned}
$$

$$
\left.=F_{0}\left(1369-630 w^{2}+81 \omega^{4}\right)^{-1 / 2}\right)
$$

$$
\left.A\left(w_{p}\right)=F_{0}(32-35)^{2}+36 \cdot(35 / 9)\right)^{-1 / 2}
$$

$$
\begin{aligned}
& \left(W_{p}\right)=F_{0}\left((37-35)^{2}+36 \cdot(35 / 9)\right. \\
& =F_{0}(4+4(35))^{-1 / 2}=F_{0}(4.36)^{1 / 2}=F_{0} / 12
\end{aligned}
$$

$$
A\left(\omega_{p}\right) / F_{0}=1 / 12 \approx 0.0833
$$

$$
\begin{aligned}
F_{0}=5: A(2) & =5\left((37-9.4)^{2}+36 \cdot 4\right)^{-1 / 2} \\
& =5(145)^{-1 / 2}=5=i
\end{aligned}
$$

$$
\begin{aligned}
& =5\left((37-9.4)^{2}+36 \cdot 4\right) \\
& =5(145)^{-1 / 2}=\frac{5}{\sqrt{5 \cdot 29}}=\sqrt{\frac{5}{29}} V .
\end{aligned}
$$

$$
\frac{A\left(\omega_{p}\right)}{A(0)}=\frac{F_{0} / 12}{F_{0} / 37}=\frac{\frac{37}{12} \approx 3.083}{Q \approx 3.041} \leftarrow \begin{aligned}
& \text { pretty } \\
& \text { close! }
\end{aligned}
$$

$$
\begin{aligned}
& A(2)=\sqrt{\left(37-3(6)^{2}+36 \cdot 4\right.}=\sqrt{144+1}=\sqrt{145}=\frac{5}{\sqrt{145})} \\
& =\frac{\sqrt{145}}{29}, \quad A(0)=F_{0} / 37 \\
& 0=A^{\prime}(\omega)=F_{0}\left(-\frac{1}{2}\right)(\cdots)^{-3 / 2}(\underbrace{2\left(37-9 \omega^{2}\right)(48 \omega)+72 \omega}) \\
& 0=\sin \omega\left(-\left(37-9 \omega^{2}\right)+2\right)=36 \omega\left(9 \omega^{2}-35\right) \\
& \omega=0, \quad \omega_{p}=\sqrt{3519}=\sqrt{3513} \approx 1.972
\end{aligned}
$$

MAT 2705-03/04 11F TakehomeTest 3 Answers (2)
(2)a) $\cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]^{\prime}=\underbrace{\left[\begin{array}{ccc}-1 / 2 & 0 & 1 / 2 \\ 1 / 2 & -1 / 5 & 0 \\ 0 & 1 / 5 & -1 / 2\end{array}\right]}_{A}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right],\left[\begin{array}{l}x_{1} 0 \\ x_{2}(0) \\ x_{3}\end{array}\right]=\left[\begin{array}{l}18 \\ 0 \\ 0\end{array}\right]$
b) $0=|A-\lambda I|=\left|\begin{array}{ccc}-\frac{1}{2}-\lambda & 0 & 1 / 2 \\ 1 / 2-1 / 5 \lambda & 0 \\ 0 & 1 / 5-1 / 2 \lambda\end{array}\right|=-\lambda^{3}-\frac{6}{5} \lambda^{2}-\frac{9}{20} \lambda\left(\lambda^{2}+\frac{6}{5} \lambda+\frac{9}{20}\right)$

$$
\begin{aligned}
& y_{1}=c_{1} \\
& y_{2}=e_{2} e^{-\frac{3}{5} t} e^{\frac{3}{10} i t}
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=e_{2} e \\
& y_{3}=e_{3} e^{-\frac{3}{5} t} e^{-\frac{3}{10} t}
\end{aligned}
$$

$$
\vec{x}=c_{1} \vec{b}_{1}+e_{2} e^{-3 t / 5} e^{3 i t / 10} \overrightarrow{b_{2}}+c . c .
$$

$G_{\text {find }}$ Re, Im parts forveal basis
$\left\{X_{1}, X_{2}\right\}$ real basts of this subspace of soln space so:

$$
\vec{x}=c_{1}\left[\begin{array}{c}
1 \\
s / 2 \\
1
\end{array}\right]+c_{2} X_{1}+c_{3} Z_{2}
$$

$$
\left[\begin{array}{c}
18 \\
0 \\
0
\end{array}\right]=\vec{x}(0)=c_{1}\left[\begin{array}{c}
1 \\
5 / 2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\frac{3}{2} \\
3 / 2 \\
0
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
1 & -1 / 2 & -3 / 2 \\
5 / 2 & -1 / 2 & 3 / 2 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=[\downarrow]^{-1}\left[\begin{array}{c}
18 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4 \\
-8
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=4\left[\begin{array}{c}
1 \\
5 / 2 \\
1
\end{array}\right]-4 e^{-\frac{3 t}{5}}\left[\begin{array}{c}
-\frac{1}{2}(-3 s) \\
-\frac{1}{2}(c+3 s) \\
c
\end{array}\right]-8 e^{-\frac{3 t}{5}}\left[\begin{array}{c}
-\frac{1}{2}(3(+5) \\
-\frac{1}{2}(-3 c+5) \\
5
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
4+e^{-\frac{35}{5}}(2 c-6 s+12 c+4 s) \\
10+e^{-35}(2 c+6 s-12 c+4 s) \\
4-4 e^{-\frac{35}{5}}(c+2 s)
\end{array}\right]
$$

$$
=\left[\left[\begin{array}{cc}
4+e^{-\frac{35}{5}}\left(14 \cos \frac{3 t}{10}-2 \sin \frac{3 t}{10}\right) \\
10+e^{-\frac{35}{5}}\left(-10 \cos \frac{3 t}{10}+10 \sin \frac{3 t}{70}\right) \\
4-4 e^{-\frac{3 t}{5}}\left(\cos \frac{35}{10}+2 \sin \frac{3 t}{10}\right)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right]^{\prime}
$$

agrees with Maple!

$$
\text { c) } \vec{x}_{\infty}=\left[\begin{array}{c}
4 \\
10 \\
4
\end{array}\right] \text { since } e^{-\frac{3 t}{5}} \rightarrow 0 \text { as } t \rightarrow \infty
$$

d) $x_{3}-x_{36}=-4 e^{-\frac{3 t}{5}}\left(\cos \frac{3 t}{10}+2 \sin \frac{3 t}{10}\right)$

$$
\begin{gathered}
A=4 \sqrt{1+2^{2}}=4 \sqrt{5} \approx 8.944 \\
\delta=-\pi+\arctan 2 \approx-0.324 \text { cycles } \\
\approx-2.034 \approx-116.6^{\circ} \\
\tau=\frac{5}{3} \quad 5 \tau=\frac{25}{3} \approx 8^{1 / 3} \approx 10 \text { fornewing } \\
\text { undoro }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (2) b) } e^{-\frac{3 t}{5}}\left(\cos \frac{3 t}{10}+i \sin \frac{3 t}{10}\right)\left[\begin{array}{c}
\frac{1}{2}(1+3 i) \\
-\frac{1}{2}(1-3 i) \\
1
\end{array}\right] \\
& =e^{-\frac{3 t}{5}}\left[\begin{array}{l}
-\frac{1}{2}\left(\cos \frac{3 t}{10}-3 \sin \frac{35}{10}+3 i \cos \frac{3 t}{10}+i \sin \frac{3 t}{10}\right) \\
-\frac{1}{2}\left(\cos \frac{3 t}{10}+3 \sin \frac{3 t}{10}-3 i \cos \frac{3 t}{10}+i \sin \frac{3 t}{6}\right) \\
\cos \frac{3 t}{10}+i \sin \frac{3 t}{10}
\end{array}\right] \\
& =\underbrace{e^{-\frac{3 t}{5}}\left[\begin{array}{c}
-\frac{1}{2}\left(\cos \frac{3 t}{0}-3 \sin \frac{3 t}{10}\right) \\
-\frac{1}{2}\left(\cos \frac{3 t}{6}+3 \sin \frac{3 t}{\omega}\right) \\
\cos \frac{3 t}{10}
\end{array}\right]}_{X_{1}}+i e^{-\frac{3 t}{5}\left[\begin{array}{l}
-\frac{1}{2}\left(3 \cos \frac{3 t}{6 t}+\sin \frac{3 t}{40}\right) \\
-\frac{1}{2}\left(-3 \cos \frac{3 t}{6}+\sin \frac{3 t}{6}\right) \\
\sin \frac{3 t}{10}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=\lambda=0:\left[\begin{array}{ccc}
-1 / 2 & 0 & v_{2} \\
y_{2} & -1 / 5 & 0 \\
0 & 1 / 5 & -1 / 2
\end{array}\right] \xrightarrow{\operatorname{rref}}\left[\begin{array}{ccc}
L & F & F \\
1 & 0 & -1 \\
0 & 1 & -5 / 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& x_{3}=t, x_{1}=+t, x_{2}=+5 / 2 t \\
& \left\langle x_{1}, x_{2}, x_{3}\right\rangle=\langle t, 5 / 2 t, t\rangle=t \underbrace{\langle 1,5 / 2,1}_{\overrightarrow{b_{1}}}\rangle \\
& x_{2}=\lambda=-\frac{3}{5}+\frac{3}{10} i: \quad A-\lambda I=\left[\begin{array}{ccc}
-1 / 2+\frac{3}{5}-\frac{3}{10} i & 0 & 1 / 2 \\
1 / 2 & -\frac{1}{5}+\frac{3}{5}-\frac{3}{10} i & 0 \\
0 & 1 / 5 & -1 / 2+\frac{3}{5}-\frac{3}{10} i
\end{array}\right] \\
& \xrightarrow{\text { rref }}\left[\begin{array}{ccc}
L & L & F \\
1 & 0 & \frac{1}{2}(1+3 i) \\
0 & 1 & \frac{1}{2}(1-3 i) \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& x_{3}=t, x_{1}=-\frac{1}{2}(1+3 i) t, x_{2}=-\frac{1}{2}(1-3 i) t \\
& \left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle t,-\frac{1}{2}(1+3 i) t,-\frac{1}{2}(1-3 i) t\right\rangle \\
& =t\langle\underbrace{\left.1,-\frac{1}{2}(1+3 i),-\frac{1}{2}(1-3 i)\right\rangle}_{\overrightarrow{b_{2}}=\vec{b}_{3} \quad \bar{\lambda}_{3}=\bar{\lambda}_{2}} \\
& B=\left\langle\overrightarrow{b_{1}}\right| \overrightarrow{b_{2}}\left|\overrightarrow{b_{3}}\right\rangle=\left[\begin{array}{ccc}
1 & -1 / 2(1+3 i) & -1 / 2(1-3 i) \\
5 i 2 & -1 / 2(1-3 i) & -1 / 2(1+3 i) \\
1 & 1 & 1
\end{array}\right] \\
& \left(\vec{x}=B \vec{y}, \vec{y}=B^{-1} \vec{x}\right) \rightarrow \vec{x}^{\prime}=A \vec{x} \rightarrow \vec{y}^{\prime}=A_{B} \vec{y} \\
& A_{B}=B^{-1} A B=\left[\begin{array}{ccc}
-1 / 2 & 0 & 0 \\
0 & -1 / 5 & 0 \\
0 & 0 & -1 / 2
\end{array}\right] \\
& {\left[\begin{array}{l}
y_{1}{ }^{\prime} \\
y_{2}{ }^{\prime} \\
y_{3}{ }^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
0 y_{1} \\
\left(-\frac{3}{5}+\frac{3}{10} i\right) \\
\left(-\frac{3}{5}-\frac{3}{10} i\right) \\
y_{2}
\end{array}\right]} \\
& \text { c) }
\end{aligned}
$$

MAT 2705-03104 11F TakehomeTest 3 Answers (3)

$$
\begin{aligned}
& \text { (3) a) } \\
& {\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
x_{1}\left(y_{1}\right. \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]} \\
& 0=|A-\lambda I|=\left(\begin{array}{cc}
-3-\lambda & 4 \\
6 & -5-\lambda
\end{array}\right]=(\lambda+3)(\lambda+5)-24 \\
& =\lambda^{2}+8 \lambda-9 \\
& \lambda=1,-9 \quad \lambda_{1}=1, \lambda_{2}=-9 \\
& \lambda=1: A-I=\left[\begin{array}{cc}
-3-1 & 4 \\
6 & -5-1
\end{array}\right]=\left[\begin{array}{cc}
-4 & 4 \\
6 & -6
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & F \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& x_{2}=t \quad x_{1}=t \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]=t \underbrace{\left[\begin{array}{l}
1 \\
1
\end{array}\right]}_{\overrightarrow{b_{1}}} \\
& \lambda=-g: A+g I=\left[\begin{array}{cc}
-3+g & 4 \\
6 & -5+g
\end{array}\right]=\left[\begin{array}{cc}
b_{1} & 4 \\
6 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ll}
L & F \\
1 & 2 / 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
C
\end{array}\right] \\
& x_{1}=t, x_{1}=-\frac{2}{3} t \quad\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 / 3 t \\
t
\end{array}\right]=t \quad\left[\begin{array}{c}
-2 / 3 \\
4
\end{array}\right]=3 t\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \\
& B=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right] \quad B^{-1}=\frac{1}{5}\left[\begin{array}{ll}
3 & 2 \\
-1 & 4
\end{array}\right] \quad A_{B}=B^{-1} A B=\left[\begin{array}{c}
\overrightarrow{b_{2}} \\
1 \\
0 \\
0
\end{array}\right] \\
& \text { t) } \vec{x}=\overrightarrow{A x} \rightarrow\binom{x^{2}=B \overrightarrow{y_{2}}}{y=B^{2} x} \rightarrow \vec{y}^{\prime}=A_{B} \vec{y} \\
& \binom{y_{1}^{\prime}}{y_{2}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -g
\end{array}\right)\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
-9 y_{2}
\end{array}\right] \quad \begin{array}{ll}
y_{1}^{\prime}=y_{1} & y_{2}=c e^{t} \\
y_{2}^{\prime}=-g y_{2} & y_{2}=c_{2} e^{-g t}
\end{array} \\
& \left.\left\lvert\, \begin{array}{c}
-1 \\
4
\end{array}\right.\right)=\vec{x}(0)=B\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]+\binom{a_{1}}{c_{2}}=\frac{1}{5}\left[\begin{array}{c}
32 \\
-11
\end{array}\right]\left[\begin{array}{c}
-1 \\
4
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-3+8 \\
1+4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
e^{t} \\
e^{-9 t}
\end{array}\right]=e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{-9 t}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
e^{t}-2 e^{-9 t} \\
e^{t}+3 e^{-9 t}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}
\end{aligned}
$$

b) $\left[\begin{array}{l}0 \\ 5\end{array}\right]=B\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right] \rightarrow\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}3 & 2 \\ -11\end{array}\right]\left[\begin{array}{l}0 \\ 5\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
\uparrow oops, bob forgot to edit this to be $\langle-1,4\rangle$ as in IVP but no matter. Makes sense anyway.
d)

$$
\begin{aligned}
& x_{2}= e^{t}+3 e^{-9 t} \\
& x_{2}^{\prime}=e^{t}-27 e^{-9 t}=0 \rightarrow \quad e^{9 t} \\
& 10 t=\ln 27 \quad t=\frac{1}{10} \ln 27=\frac{1}{10} \ln 3^{3}=\frac{5}{10} \ln 3 \\
& x_{2}=e^{\frac{1}{10} \ln 27}+3 e^{-9} \ln 27 \\
&= 27^{\frac{1}{10}}+3(27)^{-9 / 10}=27^{\frac{1}{10}}\left(1+\frac{3}{\left.(27)^{1010}\right)}\right. \\
&= \frac{30}{27^{910}}=10 \cdot \frac{3}{3^{27110}}=\frac{10 \cdot 33^{3 / 10}}{3^{30710}}=\frac{10}{9} 3^{3 / 100} \\
& \approx 1.545 \quad \text { local min at } \approx(0.33,1.54) \text { on graph }
\end{aligned}
$$

[MAT 2705 11F test 3 takehome plots: 1 c .

$\tau=3,5 \tau=15$, pixels merge by this time, amplitude ≈ 0.415 looks right
[1f.

resonance peak in amplitude response function
[2e,f.

nearly 90 degrees out of phase ($1 / 4$ cycle), lagging behind (later in time), characteristic of resonance

$\tau=5 / 3,5 \tau \approx 8.33 \rightarrow 10$ for viewing window
[3c, d.

yellow solution curve approaches asymptote quickly, reaches the one percent level of y_{2} at about time 0.51

$x_{3 \text { transient }}$ with exponential decaying envelope

window appropriate for asymptote e^{t}

