MAT2705-04/05 18F Test 2
Show all work, including mental steps, in a clearly organized way that speaks for itself. Use proper mathematical
notation, identifying expressions by their proper symbols (introducing them if necessary), and use equal signs and
arrows when appropriate. Always SIMPLIFY expressions. BOX final short answers. LABEL parts of problem. Keep
answers EXACT (but give decimal approximations for interpretation). Indicate where technology is used and what type
(Maple, GC). You may use technology for row reductions, determinants and matrix inverses.
1. a) Express the following system in matrix form, evaluate the inverse coefficient matrix (technology!) and use it to
solve the system
$3 x_1 + x_2 - 3 x_3 = 6$, $2 x_1 + 7 x_2 + x_3 = -9$, $2 x_1 + 5 x_2 = -5$.
Box the scalar solution (it consists of integers, in case you misenter the numbers and get ugly results).
b) Without having solved the system, what property does it have that guarantees it has a unique solution? Justify your
claim

completely each step (identifying leading and free variables, etc), box it, then re-express it as an arbitrary linear

- combination of basis vectors of the solution space. What is the dimension of this solution space?

 b) Identify the independent linear relationships among the columns $\langle \vec{v}_1 | \vec{v}_2 | \vec{v}_3 | \vec{v}_4 | \vec{v}_5 \rangle$ of the coefficient matrix which correspond to those basis vectors: $\vec{av}_1 + \vec{bv}_2 + \vec{cv}_3 + \vec{dv}_4 + \vec{ev}_5 = 0$, etc. How many of these five vectors are linearly independent?
- c) Express the last column of this matrix equation as a unique linear combination of the leading columns of the coefficient matrix.

Problem 3 on reverse side.

Sign and date the pledge at the end of your exam.

pledge

When you have completed the exam, please read and sign the dr bob integrity pledge and hand this test sheet in on top of your answer sheets as a cover page, with the first test page facing up:

"During this examination, all work has been my own. I give my word that I have not resorted to any ethically questionable means of improving my grade or anyone else's on this examination and that I have not discussed this exam with anyone other than my instructor, nor will I until after the exam period is terminated for all participants."

Signature: Date: 3. a) On the grid below, **draw in** arrows representing the vectors $\overrightarrow{v_1} = \langle 1, 3 \rangle$, $\overrightarrow{v_2} = \langle -3, 2 \rangle$ and $\overrightarrow{v_3} = \langle 9, 5 \rangle$ and **label** them by their symbols. **Extend** the basis vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}\}$ to the corresponding coordinate axes for (y_1, y_2) and **mark** the positive direction with an arrow head and the axis label. Mark off tickmarks on these axes for integer values of the new coordinates. Then **draw in** the parallelogram with edges parallel to the new axes for which $\overrightarrow{v_3}$ is the main diagonal and shade it in in pencil lightly. Read off the coordinates (y_1, y_2) of $\overrightarrow{v_3}$ with respect to these two vectors (write them down) and express $\overrightarrow{v_3}$ as a linear combination of these vectors; **put this equation** at the tip of this vector.

b) Now use matrix methods to express $\overrightarrow{v_3}$ as a linear combination of the other two vectors (show all steps in this

process), box it and then check your linear combination by expanding it out. c) **Draw in** the arrow representing the vector $\overrightarrow{v_4}$ whose new coordinates are $(y_1, y_2) = (-1, 2)$ and **label** the tip of $\overrightarrow{v_4}$ by its symbol. Draw in the projection parallelogram associated with the new coordinates and lightly shade it in in pencil. Determine its old coordinates (x_1, x_2) graphically. Then evaluate them using a linear combination.

solution