d) What is the average value of the integrand f(x, y) = x y on this region numerically evaluated to 4 significant digits?

e) Optional challenge post quiz (worth replacing one quiz grade):

Evaluate the Cartesian coordinates (X, Y) of the centroid of this region, which must lie on the bisector of this sector by symmetry. Then evaluate the corresponding polar coordinates (R, Θ) .

Show that the angle of the bisecting line segment of this sector agrees with the ray from the origin to this point,

whose slope is $\frac{Y}{X} = \tan(\Theta)$ and that the radius R satisfies the formula for the radius of the centroid of a sector of radius ρ and angle ϕ , namely $r_{centroid} = \frac{4\rho\sin\left(\frac{\phi}{2}\right)}{3\phi}$. $\frac{d}{A} = \int_{ardan2}^{\pi r/2} \sqrt{s} r dr d\theta = \int_{ardan2}^{\pi r/2} r d\theta$ $= \frac{1}{2} \left(\frac{T}{2} - arctan2\right) \qquad \frac{1}{2} \left(\frac{T}$ (cost) (rsint) arctan 2