MAT2500-05 22F Quiz 4 Print Name (Last, First)
Show all work, including mental steps, in a clearly organized way that speaks for itself. Use proper mathematical notation, IDENTIFYING expressions by their proper symbols (introducing them if necessary), and use EQUAL SIGNS and arrows when appropriate. Always SIMPLIFY expressions. BOX final short answers. LABEL parts of problem. Keep answers EXACT (but give decimal approximations for interpretation). Indicate where technology is used and what type (Maple, GC). Only use technology to CHECK hand calculations, not substitute for them.

d) Write the simplified equation for the plane through $\overrightarrow{\boldsymbol{r}}$ (2) containing the first and second derivatives there as shown in the figure. What is its distance of this plane from the origin to 3 decimal places? [How do we find the distance between a point and a plane?]
e) Evaluate the vector projections $\overrightarrow{\boldsymbol{a}}_{\|}$and $\overrightarrow{\boldsymbol{a}}_{\perp}$ of $\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{r}}^{\prime \prime}(2)$ along $\overrightarrow{\boldsymbol{r}}^{\prime}(2)$.
b) $\vec{r}(2)=\left\langle 2^{2}-4,1+6, \frac{1}{3} 8+\frac{1}{2} 4\right\rangle$

$$
=\langle 0,7,14 / 3\rangle
$$

$$
\vec{r}^{\prime}(2)=\langle 2(2)-2,3,4+2\rangle=\langle 2,3,6\rangle
$$

$$
\left|\vec{\Gamma}^{\prime}(2)\right|=\sqrt{4+9+36}=7
$$

$$
\hat{T}(2)=\frac{1}{7}\langle 2,3,6\rangle
$$

e) $\vec{r}^{\prime \prime}(2)=\sqrt{9^{2}+14^{2} / 9}=\sqrt{9.7^{2}+14^{2}}+3$
$=\sqrt{4+\left(4 t^{2}+4 t+1\right)}=\sqrt{5+4 t+4 t^{2}}$ TV distraction
c) continued: $\hat{T}(2) \cdot \widehat{T^{\prime \prime}(2)}=\frac{1}{7}\langle 2,3,6\rangle \cdot \frac{1}{\sqrt{29}}\langle 2,0,5\rangle=\frac{1}{7 \sqrt{29}}(4+30)=\frac{34}{7 \sqrt{29}}$ $\theta=\arccos \left(\frac{34}{7 \sqrt{20}}\right) \approx 25.6^{\circ}$ Look like in the diag ram, so yes!

$$
\begin{aligned}
& \text { solution } \\
& \text { a) } \vec{r}=\left\langle t^{2}-2 t, 1+3 t, \frac{1}{3} t^{3}+\frac{1}{2} t^{2}\right\rangle \\
& \vec{r}^{\prime}=\left\langle 2 t-2,3, t^{2}+t\right\rangle \\
& \vec{r}^{\prime \prime}=\langle 2,0,2 t+1\rangle \\
& \left|\vec{r}^{\prime}\right|=\sqrt{(2 t-2)^{2}+3^{2}+\left(t^{2}+t\right)^{2}} \\
& 4 t^{2}-8 t+4 \\
& +9 \\
& =\sqrt{5 t^{2}+2 t^{3}+t^{4}-4 t+13} \\
& \hat{T}=\frac{\left\langle 2 t-2,3, t^{2}+t\right\rangle}{\sqrt{t^{4}+2 t^{3}+5 t^{2}-8 t+13}}
\end{aligned}
$$

MATZ500-05 22F Quz 4
d) $0=\vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)$ :

$$
\begin{aligned}
& r_{0}=\vec{r}(2)=\langle 0,7,14 / 3\rangle=\frac{1}{3}\langle 0,21,14\rangle=\frac{7}{3}\langle 0,3,2\rangle \\
& \vec{r}^{\prime}(2) \times \vec{r}^{\prime \prime}(2)=\langle 2,3,6\rangle \times\langle 2,0,5\rangle \\
& \text { Naple }\langle 15,2,-6\rangle=\vec{n} \\
& 0=\langle 15,2,-6\rangle \cdot\langle x-0, y-7, z-14 / 3\rangle \\
& =15(x)+2(y-7)-6(z-1413) \\
& =15 x+2 y-6 z \cdots \underbrace{-14+28}_{14} \rightarrow 15 x+2 y-6 z=-14 \\
& \because \hat{n} \times \vec{r}_{0}=\frac{\langle 15,2,-6\rangle}{\sqrt{15^{2}+4+36}} \times \frac{7}{3}\langle 0,3,2\rangle \\
& =\frac{7}{3 \sqrt{265}}(6-12)=-\frac{14}{\sqrt{265}} \rightarrow d=\left|\hat{n} \times \overrightarrow{r_{0}}\right|=\sqrt[14]{\sqrt{265} \approx 0.8600}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \vec{a}=\vec{\varangle}(2)=\langle 2,0,5\rangle \\
& a_{11}=\hat{T}(2) \cdot \vec{a}=\frac{1}{7}\langle 2,3,6\rangle \cdot\langle 2,0,5\rangle=\frac{1}{7}(4+30)=\frac{34}{7} \\
& \overrightarrow{a_{11}}=a_{11} \hat{T}(2)=\frac{1}{7} \cdot \frac{34}{7}\langle 2,3,6\rangle=\frac{34}{49}\langle 2,3,6\rangle=\left\langle\frac{68,102,204\rangle}{49}\right. \\
& \overrightarrow{a_{1}}=\vec{a}-\overrightarrow{a_{11}}=\langle 2,0,5\rangle-\left\langle\frac{60,102,204\rangle}{49}\right. \\
& =\frac{\langle 30,-102,41\rangle}{49} \\
& \text { Mople }
\end{aligned}
$$

